

Realization of the unification height system between the Arab regions

Abdelrahim Ruby ^{1, 2}, Wen-Bin Shen ^{1,*}, Ahmed Shaker ², Pengfei Zhang ¹, Mostafa Ashry ³, and Shen Ziyu ⁴

* Correspondence: (wbshen@sgg.whu.edu.cn)

¹ Wuhan University, Wuhan 430079, China.

² Benha University, Cairo 11629, Egypt.

³ Minia University, Minia 61111, Egypt.

⁴ Hubei University of Science and Technology, Xianning 437100, China.

Presented at ACAG8 2023, Cairo, Egypt, 9–12 October 2023

Contents

O2 Realization of Arab Height Reference System.

Simulation Experiments.

O4 Conclusions.

- UN-GGIM Arab States
- Working Group No. 3 (WG3) : Geodetic Reference Frame
- Unified geodetic reference frames for Arab World with the same accuracy everywhere and fully consistent with the International Terrestrial Reference System and Frame (ITRS/ITRF).
- Unified vertical datum for Arab World with cm-level and fully consistent with the International Height Reference System (IHRS).

United Nations Global Geospatial Information Management (UN-GGIM) Arab States (22 Country)

(Al-Kherayef, 2019)

Work is underway to achieve the Arab Geodetic Reference Frame (ARABGRF), but the Arab Height Reference System (AHRS) has not yet been started (Our Goal).

- Existing height systems in Arab world (Today)
- Refer to different levels (as many reference levels as reference tide gauges)

- Different types of heights (normal, orthometric ...etc.)
- Omission of sea and land vertical variations with time;
- Variations at **borders** between datum zones

Unified ARAB Reference Level

• AHRS should be consistent with International Height Reference System (IHRS).

$$H_P^{EGT} + (\delta W_A / \overline{g}_A) = H_P^{KSA} + (\delta W_B / \overline{g}_B) \quad (3)$$

One of the main components for the definition of IHRS/AHRS is the potential difference = geopotential numbers for the reference stations:

 $C_{p} = W_{o} - W_{p} = -\delta W_{p} \quad (4)$ $W_{o} = const. = 62636853.353 \ m^{2}s^{-2}$ Challenge: high-precision geopotential numbers or suitable computation methods for precise potential values.

Ways For Height System Unification

A. Conventional approach (Levelling + Gravimetry)

- It is mainly used for the realization of **local vertical datum**
- Suitable for the **transformation** of existing AHRS to IHRS

$$W_P = (W_0^{local} + \delta W) - C_P \quad ; \quad \delta W = W_0^{IHRS} - W_0^{local} \quad ; \quad C_P = \int^P g \, dH \tag{5}$$

Defects

- Levelling errors (\approx cm) + Integrations.
- **Time** consuming and **repeated** measurements.
- **Hard** to realize perfectly in **mountains** area.
- Two points separated by sea **cannot be linked**.
- **Offsets** between different local height systems (\approx dm).

- Ways For Height System Unification
- B. High Degree Global Gravity Models (GGMs)
- Represents the ideal way on **global scale**

$$C_{P} = W_{0} - \left(\frac{GM}{r}\sum_{l=0}^{l_{max}}\sum_{m=0}^{l}\left[\frac{R}{r}\right]^{l}P_{lm}(\sin\varphi)(C_{lm}^{W}\cos m\lambda + S_{lm}^{W}\sin m\lambda) + \frac{1}{2}\omega^{2}r^{2}(\cos\varphi)^{2}\right)$$
(6)

Defects

- Long wavelength errors
- Different Techniques (Indirect)
- Data (heterogeneous + Gaps)
- Satellite Missions (calibration+Integration)

(Pavlis et al. 2012)

Ways For Height System Unification

C. Disturbing Potential in combination with reference ellipsoid

It can provide a **global** solution for height unification

$$C_P = W_0 - W_P; \quad W_P = U_P + T_P; \quad T_P = T_{P(satellite-only)} + T_{P(residual)} + T_{P(terrain)}$$
(7)

Defects

Determination of *C_p* depends on a series of approximations (Molodensky & Stokes.
 Use remove-restore technique, i.e. requires previous information of potential from various sources (global geopotential model, tide gauge data, gravity observation data, et al.)

i.e., different methodologies produce different potential values.

Contents

O2 Realization of Arab Height Reference System.

Simulation Experiments.

O4 Conclusions.

Relativity (Einstein 1915) : Predictions

(Bjerhammar 1985; Shen et. al, 1993; Shen, 1998)

- Time comparison: A clock runs faster at higher geopotential position than at lower position.
- Frequency comparison: The vibration frequency of the clock (oscillator) at higher geopotential position is larger than that at lower position.

Relativistic Geodesy

(Bjerhammar 1985; Shen et al. 2017 ;Wu & Müller 2020; Wu et al. 2020)

• Clock with stability 10^{-18} corresponds to $\Delta W \approx 0.1 \ m^2/s^2$, and about $\approx 1 \ cm$ in physical heights

$$H_{B} = \frac{H_{A} \cdot \overline{g}_{A} - \Delta W_{AB}}{\overline{g}_{B}} \qquad (11)$$

Accuracy Records for atomic Clocks

Stability of Microwave and Optical Clocks (Delva et al. 2019)

Challenge: Not only atomic clocks with high stability but also reliable time/frequency transfer links.

Time – Frequency Methods for Clock Comparison

Optical Fiber Link (A.. Kuhl et al. 2019)

GNSS PPP Time Transfer Technique (Cai et al. 2020)

fer TWSTFT Time Transfer Technique 20) (Wu et al. 2020)

Future Mission for Clock Comparison

• China Space Station (CSS) was launched in October 2022

• Atomic Clock Ensemble in Space (ACES) is planned for 2025

Accuracy of Clocks $\sim 1 \times 10^{-16}$

(Cacciapuoti et al., 2017)

Arab Height System and Two-Way Frequencies Link

• Up-link and down-link signals between satellite
(denoted as S) and ground station (denoted as E)
satisfy the following expression:

$$f_{ES}^{r} = f_{ES}^{e} - \Delta U_{ES} + (\Delta f_{Doppler1} + \Delta f_{Doppler2})_{ES} + \Delta f_{Troposphere-ES} + \Delta f_{ionosphere-ES} - (\Delta f_{Tides} + \Delta f_{External Mass})_{ES} + \Delta f_{Relativistic-ES} + \varepsilon_{ES}$$
(12)
• A combination of two frequencies link, the gravitational potential (GP) difference is given by:

$$\Delta U_{SE} = \frac{f_{SE}^{r} - f_{ES}^{r}}{2} + \Delta f_{ES} + \varepsilon$$
(13)
Details in Shen et al. (2023, PRD)

$$\Delta U_{ES} = U_{S} - U_{E}$$
, GP difference

 Λf : Sum of all correction terms (such as ionosphere and tropospheric effects....etc.).

 ϵ : Un-modeled errors of signals (clock errors, random errors and other noises).

C/G/8 2023

Arab Height System and Two-Way Frequencies Link

$$\Delta W_{AB}(t) = W_A - W_B = \Delta U_{A-\text{Satellite}}(t) - \Delta U_{B-\text{Satellite}}(t) + (Z_A - Z_B) \quad (15)$$

• Suppose height of point *A* is given, then height of point *B* can be obtained as:

$$H_{B} = \frac{H_{A} \cdot \overline{g}_{A} - \Delta W_{AB}}{\overline{g}_{B}} \quad (16) \quad (\text{Shen et al. 2023})$$

Contents

O2 Realization of Arab Height Reference System.

O3 Simulation Experiments.

O4 Conclusions.

Unify Height System between Egypt and Kingdom of Saudi Arabia

Experiment setup

• Experiments are conducted at the time duration when the satellite USA 239 moves from position

S to position *S*′ (from UTC 09:00 PM to 12:00 PM (3 hours), August 30, 2023).

Table (1): Details of selected stations.

Country	Station Name	World Geodetic System 1984		Vertical Reference Frame	
		Latitude [DD.ddd]	Longitude [DD.ddd]	Orthometric Height [m]	Datum
Kingdom of Saudi Arabia (KSA)	TB05	26.366944	36.368639	17.533	KSA-VRF14
Egypt (EGT)	OZ09	26.017434	34.321205	11.2636	EGT-VD06

Table (2): Parameters of Simulation and frequency links.

Items	Values of Parameter	
Satellite Name	NAVSTAR 67 (USA 239: GPS Navigation Sat.)	
Altitude	$\sim 20228 \ Km$	
Orbit inclination	53.5 °	
Position/ Velocity accuracy of satellite	0.1 m and $1 \times 10^{-5} m/s$	
On-board clock stability	$5 \times 10^{-16} / \sqrt{\tau}$	
Ground clock stability	$5 \times 10^{-17} / \sqrt{\tau}$	
Uplink frequency	1.575 GHZ	
Downlink frequency	1.575 GHZ	
Observation duration	from 9:00 PM to 12:00 PM (3 h), August 30, 2023	
Observation cutoff elevation angle	15°	
Measurement interval	1 s (No. of observation = 10800)	
Gravity field model	EGM2008	
Ionospheric model	International Reference Ionosphere	
Tropospheric model	Earth Global Reference Atmospheric Model	
Tide correction	ETERNA	
Height system difference	6.490 m	

Connection of Egypt (EGT) datum and Kingdom of Saudi Arabia (KSA) datum via two-way frequency link

3. Simulation Experiments

- 2023 Em
- Unify Height System between Egypt and Kingdom of Saudi Arabia
 Scheme of simulation experiment

3. Simulation Experiments

Unify Height System between Egypt and Kingdom of Saudi Arabia

Results and Analysis

Relative Frequency Shifts in One-way Frequency Link.

 Different colored curves denote different relative frequency shifts in a one-way transfer. Stability of Clocks' Frequency Signals.

• The red and green lines are simulation clock error data for satellite and ground clock, and the stabilities reach $5 \times 10^{-16} / \sqrt{\tau}$ and $5 \times 10^{-17} / \sqrt{\tau}$ (τ in second), respectively.

- 2023
- Unify Height System between Egypt and Kingdom of Saudi Arabia
 Results and Analysis
- Error sources and their magnitudes in determining the gravitational potential difference

between a satellite and a ground station.

Error Sources of Various Frequency Shifts	Residual errors	
Classical Doppler Effect	5.26×10^{-20}	
Ionosphere shift Error	3.74×10^{-19}	
Troposphere shift Error	1.91×10^{-19}	
Relativistic Effect	2.92×10^{-18}	
Tide shift Error	1.27×10^{-18}	
Clock Error	4.31×10^{-17}	

• The two-way frequency method can mostly eliminate various errors. Only, the stability of the clocks will affect the results.

3. Simulation Experiments

- 2023 Text
- Unify Height System between Egypt and Kingdom of Saudi Arabia

Results and Analysis

- We can see that the mean offset was at the centimeter level, while STD was at the decimeter level, because the clock stability is $5 \times 10^{-17} / \sqrt{\tau}$ corresponding to 0.5 m in height.
- To estimate the reliability of the twoway frequency method, we will conduct different simulation experiments with different chosen parameters.

The offset between true values and estimated values of height datum difference

3. Simulation Experiments

 Next step: We will start a project " Clocks Network for Arab Height Reference System (AHRS) Unification"

Contents

O2 Realization of Arab Height Reference System.

Simulation Experiments.

O4 Conclusions.

- A unified height system can **contribute to economic** growth by reducing project costs, minimizing errors, and improving the accuracy of geographic information.
- Arab Height Reference System (AHRS) should be consistent with the International Height Reference System (IHRS) or $\delta W = W_0^{IHRS} W_0^{Local}$
- The two-way frequency combination method is very promising for unifying the Arab World's vertical datum at the cm level.
- UN-GGIM: Encourage Arab countries to share existing height data and work together to standardize measurement techniques, reference frames, and data formats. This will be a fundamental step in achieving unification.

Thanks for your Attention

E-mail : <u>abdelrahim.ruby@feng.bu.edu.eg</u>

http://www.bu.edu.eg/staff/abdelrahimruby

ACAG8 2023, Cairo, Egypt, 9 -12 October 2023